
Parameter Significance for Email Attack Detection

Khaled Alduhaiman

School of Information Tech.
George Mason University

Fairfax, VA 22030

 kalduhai@gmu.edu

Michael Francis

George Mason University

4789 Walbern Ct
Chantilly, VA 2003

rfrancis2@Cox.net

Sultan Aljahdali

School of Information Tech.
George Mason University

Fairfax, VA 22030

saljahda@gmu.edu

ABSTRACT
High speed network traffic monitoring generates large
volumes of data. This data is composed of parameter sets
that are ext racted from packets (and packet switching
processes) as they transit points of inspection. Effective
countermeasures and event detection capabilities for early
attack sensing and warning (ASW) are predicated on
methods that can be deployed at an autonomous system
boundary in the carrier backbone network. Thus the optimal
point of inspection (for ASW) is in a very noisy, high-speed
/ large-data volume environment. Inspection and detection
schemes are severely constrained by the speed-volume
factors and the low information content (quality) that is
available at this point of inspection.

1. INTRODUCTION
A hidden Markov modeling (HMM) technique to detect
denial of service/ distributed denial of service attacks
required parameters for the basic model. The initial effort
has focused on the question: " what observable parameters
are important?" To answer this question, researchers
developed some techniques to evaluate the significance of
parameters. The general objective is to find the minimum set
of parameters needed to detect specific events. The ultimate
intent is to produce efficient algorithms for the detection of
events in high- speed gateways where minimal knowledge is
available concerning the source and/or destination
computing environments.

2. METHODOLOGY: GROUNDED THEORY
Grounded theory method (GTM) is a process for the
construction of theory from observable phenomena. With
GTM, the theory is inductively derived from the study of
the behavior under consideration. There are three basic
elements of grounded theory: concepts, categories and
propositions. Grounded theory method is used in this
research to develop theory concerning the observable
features of browser requests directed to a Web Server. The
intent is to inductively derive a generalized relationship
between the observable features that identifies the browser
request as either an attack (or part of an attack) or a valid

browser request. There are five analytic phases (and not
strictly sequential) in this process [Pandit, 1996]:

i. Research design- defines the data capture
method, conceptualization of data and the
categorization technique.

ii. Data collection- at the Web Server, observation is
constrained to the features that are observable in
the browser request.

iii. Data ordering- by browser request type (i.e. know
attack, know valid, etc.)

iv. Data analysis - apply mathematical algorithm,
perform statistical analysis and data mining

v. Literature comparison- review of related research
The grounded theory method is well-suited to this problem.
The researchers could not develop a theory a priori and
then test it. In fact, it was not known that any theory
actually existed. The grounded truth method provides an
iterative process where data collection, analysis and theory
stand in a reciprocal relationship [Strauss, Corbin 1990]
Specifically for this research, it was assumed that if any
theory existed, a systematic collection, management and
analysis of data pertaining to the observable phenomena
would yield an inductively derived construction of the
theory. This method assumes that the variables have acted
and the research is limited to measuring the effects. [In
counterpoint a true experiment manipulates variables and
measures the causal effects]. A weakness of this method is
the requirement to:

Ø Infer a hypothesis (or set of hypotheses) from
the statistical analysis.

Ø Eliminate competing hypotheses, until a single
hypothesis is validated [Hicks, 1993].

This paper presents some initial findings and does not
attempt to identify and eliminate competing hypotheses in a
formal proof. The limits of this work in its current state are
readily acknowledged. However, we have noted that a
serious effort is underway by many organizations to create
systems that can provide ASW functionality. We believe a
structured approach to build a framework for rigorous
analysis and proof of hypothesis is needed for these
efforts. This paper provides an introduction to several
concepts that apply.

The CaptureNet tool extracted packet feature information
from the point of inspection depicted below to build the

required data sets. The data was then stored in comma
separated value (CSV) format for replay and statistical
analysis. The victim machine is an email server, the attack
machine is a Microsoft Windows 2000 client, running email
attack programs. The "normal" mail traffic features are
extracted from a machine that is assume to have normal
hygiene (i.e. the traffic is free of any type of email attack).

Attack
Machine

Victim
Machine

CaptureNet

Parameter
Data

Storage

Re-play (any
combination of
parameters for

attack(s) and/or normal
traffic

Normal
Traffic
(sibley)

Email Attack traffic: Aenima, Xmas 2000, Kaboom

Significance
Test(s)

Figure 1. Lab configuration

3. ANALYSIS
A neural network was used to evaluate parameter
significance. PathFinderTM [Z Solutions, Inc.] is an
adaptive neural network that learns using an iterative
process called back propagation. A discussion of neural
networks is beyond the scope of this paper, but the
interested reader is referred to a tutorial available from Z
Solutions for additional information. The following five
parameters were selected for significance testing: (X1)
source port, (X2) destination port, (X3) sequence number,
(X4) acknowledgment number and (X5) packet size. The
sigmoid transformation was selected for the output, where
A (output = 0) is a determination of an attack and N (output
=1) is a determination that the traffic is normal. Figure (2)
depicts the configuration of the PathFinderTM Three sets of
data were generated:

1. Training set- uses parameters derived from normal
(sibley) traffic and two attack programs (Aenima, Xmas
2000).

2. Test set- uses non-overlapping parameters from the
same traffic types (sibley, Aenima and Xmas 2000) as
the training set.

3. Validation set- uses non-overlapping data from the
previous traffic types (sibley, Aenima, Xmas 2000) plus
the addition of another attack traffic parameter set
(Kaboom).

A(0) N(1)

H L 1 H L 2

i p s u m -
t cpsum t c p w i n d o w dgmlen

H L 3 H L 4 H L 5 H L 6

tcpack

A T T A C K N O R M A L

t cpseq

 Figure 2. PathFinderTM configuration

PathfinderTM is an application that was designed to help
users utilize neural networks. It has an interface with
Microsoft Excel for data management and analysis. The
learning algorithm employs back propagation. PathfinderTM
uses three data sets to perform a neural network analysis.
The three data sets are the (1) training set, (2) the test set,
and (3) the validation set.

§ The training set is the set of data used by the
neural network to learn the problem.

§ The test set is used during training to keep an eye
on learning performance.

§ The validation set is used after training as a final
check to find out how well the model performs.

The learning parameters in a neural network control the rate
of learning. PathfinderTM uses an advanced algorithm to set
the learning parameters for our problem. The network
architecture (shown in figure 2) is controlled by these
parameters:

§ Output nodes- the number of output nodes, the
number of output nodes is one and the result
either 0 or 1.

§ Output transform function- the output

transformation function PathfinderTM allows two
possible output transformations: the sigmoid
transformation or the linear transformation. Z
Solutions recommends using sigmoid
transformation.

§ Hidden Nodes- The number of hidden nodes
controls the number of weights in the model.
Usually, the greater the complexity of the problem
the more nodes are needed. On the other hand,
too many nodes may lead to over-fitting.
PathfinderTM defaults to 6 hidden nodes and
rarely requires significantly more.

§ Epoch size- The epoch size is the number of
observations seen by the learning algorithm
before weight adjustments. The idea is to look at
a large enough epochs that noisy extraneous data
points will not excessively influence the results
and small enough that specific details can be

determined. PathfinderTM defaults to an epoch
size of 12. This is a good place to start and
usually experiment in the range of 6 to 64.

The data considered in this study was collected in three
scenarios. Each email attack tool was instructed to bomb
one hundred emails from its machine to the target. After
recording all the emails traffic at the target computer,
packets were averaged based on their email size. Number of
packets’ email varies depending on their size. If one email
has 10 packets, they were averaged to one packet.
Moreover, one hundred normal emails were sent from their
machines to the victim’s machine. Seven different email-
bombing tools were used and four different normal emails
were sent. Four of the email bombing were mixed with two
of the normal emails and used during the training of the
neural networks. Also, two of the email bombing were
mixed with two of the normal emails and used during the
validation process.

Significance testing was performed on several parameters:

§ Datagram length (dgmlen),
§ Acknowledgment number (tcpack)
§ Sequence number (tcpseq)
§ Header checksum for both TCP and IP (tcpsum ,

ipsum)
§ Window size (tcpwindow).
§ A class variable- was added to show whether the

email was normal (1) or attack (0).
 The inputs are dgmlen, tcpack, tcpseq, tcpsum, ipsum and
the output is class. The data is divided into three data sets:
training data, test data, and validation data. Training and
test data were collected first and validation data were
collected second. The validate data is used after training is
completed to determine how accurate a neural network
model is on data not seen during training. Samples of
training, test and validation data are shown in the following
tables.

Table 1. Sample training data

dgmlen ipsum tcpseq tcpack tcpwindow tcpsum class
659.8 26844.7 2508747052 3067442870 11042.4 43778.3 1
577.5 26699.6 2508999080 3067682224 14101 26189.3 1
59.3 30288.9 2732277838 2318855137 17135.7 28384.9 1
75.1 33540.9 1385924998 1385925020 12596.7 33503.9 0
110 31719.8 2648319293 2648319336 16723 32863.5 1

308.9 29614.2 2457418608 3016359125 16564.7 32257.8 1
756.2 25863.8 2229478565 3346824468 12798.1 23301.9 1
902.2 25437 2229698073 3346918666 12809.1 21216.9 1
106.5 20534.5 4104389228 4104389272 16891.8 32608.4 0
223.2 28027.8 677676449 677676478.2 17215.9 40316.8 0
756.2 26002.6 2229373722 3346779126 13514.3 28012 1

916 26488.3 2508810165 3067484471 14067 28188.2 1
236.5 33311.8 2965863799 2847922313 17357.8 39297.6 1

Table 2. Sample of test data

dgmlen ipsum tcpseq tcpack tcpwindow tcpsum class
78.2 28127.8 677683544 677683570.3 17081.7 33021.5 0

222.1 28138.9 677658924 677658957.3 17192.8 36687.3 0
127.5 20388.5 4104398779 4104398848 16745.7 35787.2 0
720.4 29169.4 2153211985 3271149311 14657.5 33739.3 1
223.2 28252.8 677640504 677640532.9 17257.1 31643.9 0
94.7 20763.3 4104372507 4104372546 16666.1 30355 0

377.1 30626.4 2991676034 2432713351 13896.5 18562.3 1
75.1 21975.9 1385919206 1385919228 12448.2 25574.9 0

126.5 20871.5 4104361689 4104361757 17008.2 40494.3 0
223.7 28476.3 677605269 677605298.8 17249.5 33677.2 0

728 28724.9 2182284131 3300163111 16516.9 25981.1 1
169.6 31521.1 2656060032 2656060059 17185.1 37282.7 1
86.3 20801.7 4104370149 4104370180 17438.5 40441.5 0

dgmlen ipsum tcpseq tcpack tcpwindow tcpsum class Predicted

116.6 28815 3067703904 2508976443 16926.4 24227.6 1 0
75.1 19405.9 1385928859 1385928881 12452.7 32479.4 0 0

122.5 20358.5 4104401495 4104401559 16884.4 40971.5 0 1
85.3 28260.7 677661404 677661438.8 16896.7 27233 0 0

987.6 25516.2 2229557428 3346858449 13525.3 28613.6 1 0
916 26131.3 2509059837 3067650919 12963.4 37750.6 1 1

105.9 20747.1 4104372927 4104372970 16390.5 38828.5 0 0
75.1 25830.9 1385918153 1385918175 12017.7 28111.4 0 0
95.7 18942.9 3808333236 3808333278 16577.2 40127.1 0 0
75.1 10410.9 1385922365 1385922387 12265.2 32546.9 0 0

745.2 26307.3 2509055093 3067647818 11106.8 19659.4 1 0
126.5 20434.5 4104395301 4104395367 16949.2 41833.9 0 0
805.8 28693.6 2177965057 3295836986 13299.1 29807.3 1 1

Table 4. Sample of validation data

dgmlen ipsum tcpseq tcpsequp tcpack tcpackup
tcpw indo

w tcpsum class

720.4 33693.1 1864463456 28448.8 2193325658 33467.2 14538.7 23395.3 ?

226.5 36018.5 2296906199 35047.3 2296906241 35047.3 16927.9 37351 ?

175.5 36101.5 2296653235 35043.7 2296653251 35043.7 17420.8 40386.6 ?

209.4 41104.6 2022477647 30860 2022477940 30860 17076.1 41528.6 ?

304.6 37518.3 1946667757 29703.4 2111102747 32212.6 16592 38595.7 ?

79.1 36231 2296486259 35041 2240366093 34184.8 17074.2 38180.1 ?

350.7 40935.8 2024539357 30891.5 2024539773 30891.5 16665.2 38980.1 ?

805.8 33618.9 1864454013 28448.8 2193321939 33467.2 16516.9 21188.9 ?

Table 3. results (highlighted were missed)

The data considered in this study were obtained by using
the three scenarios discussed above. The first test results
suggest that it is possible to distinguish between normal
and attack email streams with more than 85 % of accuracy,

MAPE-Mean absolute percentage error

∑
=

−
=

N

i i

ii

Target
TargetForcast

N
MAPE

1

1

as shown in Figure 3. The table below shows a sample of
these results.

Figure 3. Error Rates, showing an 88 % Accuracy

The highlighted rows are false alarms (i.e. mismatches
between the class and the predicted columns). Four different
error calculations were performed on the test results. The
error calculations are defined as follows:

MAE - Mean absolute error

 ∑
=

−=
N

i
ii TargetForcast

N
MAE

1

1

Where N = Number of observations (i. e. the number of rows
in the data matrix).

MSE - Mean square error

∑
=

−=
N

i
ii TargetForcast

N
MSE

1

2)(
1

Where N = Number of observations.

The mean square error calculates the square of the errors;

RMSE - Root mean square error

∑
=

−=
N

i
iN

RMSE
1

2)(
1

TargetForcast i

 Where N = Number of observations.

Where N = Number of observations.

 Table 5. Errors values

Training Data 400 rows

Test Observations 233 rows

Validation
Observations

193 rows

RMSE 0.3274

MAPE 3.27 %

MAE 0.5

 Figure 4 Error vs. Predicted

4. RESULTS WITH NEURAL NETWORK

RMSE - Root mean square error

∑
=

−=
N

i
iN

RMSE
1

2)(
1

TargetForcast i

 Where N = Number of observations.

The root mean square error is simply the square root of the mean
square error.

MAPE-Mean absolute percentage error

∑
=

−=
N

i i

ii

Target
TargetForcast

N
MAPE

1

1

Where N = Number of observations.

% Error Rate

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300

Error

P
er

ce
n

ta
g

e

% Error Rate

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300

Error

P
er

ce
n

ta
g

e

During validation testing, PathFinderTM correctly associated
(100%) of the parameters used in the training (and test) data
sets with either a normal or attack traffic event as appropriate.
Parameters associated with a previously unseen attack
("Kaboom") were correctly associated with an attack 85% of
the time.

 Data

 Correct Incorrect

Attack
138

 (83.1%)

28

(16.9%)

Normal
27

(100%)

0

(12.9%)

 165

 (85.5%)

28

 (14.5%)

5. REFERENCES
[1] Young, Steve, (et al.) The Hidden Markov Modeling

Tool Kit (HTK) Book, version 3.0, Microsoft
Corporation, July 2000.

[2] Zalewski, Michal, Strange Attractors and TCP/IP
Sequence Number Analysis, white paper, BindView
Corporation, Houston Tx., www.bindview.com, 2001.

[3] Z Solutions, Pathfinder Neural Network System: a
tutorial, Z Solutions LLC, Atlanta, Ga.
www.zsolutions.com , 1998.

[4] Elliott, John., Distributed Denial of Service Attacks and
the Zombie Ant Effect, IT Pro, March –April 2000, pg 55-
57

[5] Comerford, Richard., No Longer in Denial, IEEE
Spectrum, January 2001, pg 59-61.

[6] Geng, Xianjun., Whinston, Andrew.B., Defeating
Distributed Denial of Service Attacks, IT Pro, July-
August 2000, pg 36-41.

[7] Schuba, Christoph.L., Krsul, Ivan.V, Kuhn,Markus.G.,
Spafford,Eugene.H., Sundaram,Auobindo.,
Zamboni,Diego., Analysis of a Denial of Service Attack
on TCP, COAST Laboratory, Department of Computer
Sciences, Purdue University, IEEE 1997, pg 208-223.

[8] Berry, Michael J.A., and Linoff, Gordon. “Data Mining
Techniques”, Wiley 1997 P 287.

[9] Aleksander,I.;Evans,R.G.;Sales,N. Towards intentional
neural systems: experiments with MAGNUS 1995.,
Artificial Neural Networks, Fourth International
Conference on , 1995 Page(s): 122 –126

[10] Amoroso Edward, Intrusion Detection, an introduction
to Internet Surveillance, Correlation, Trace Back, Traps,
and Response. Intrusion.Net Books, June 1999.

[11] Northcutt, Stephen, Network Intrusion Detection
Ana Analysis Handbook , New Riders Publishing,
Indiana, June 1999.

[12] Ptacek, Thomas and Newsham, Timoth. Insertion,
Evasion, and Denial of Service: Eluding network
Thomas intrusion detection. Technical Report, Secure
Network, Inc., January 1996.

[13] Rabiner L., "A tutorial on Hidden Markov Models and
selected applications in speech recognition", 1989,
Proc. IEEE 77(2):257--286.

[14] Simonds, F. Network Security: Data and Voice
Communications. McGraw-Hill, 1996.

[15] Stallings, W. Network Security Essentials; Prentice
Hall: 1996-366

